Giant five-photon absorption from multidimensional core-shell halide perovskite colloidal nanocrystals

نویسندگان

  • Weiqiang Chen
  • Saikat Bhaumik
  • Sjoerd A Veldhuis
  • Guichuan Xing
  • Qiang Xu
  • Michael Grätzel
  • Subodh Mhaisalkar
  • Nripan Mathews
  • Tze Chien Sum
چکیده

Multiphoton absorption processes enable many technologically important applications, such as in vivo imaging, photodynamic therapy and optical limiting, and so on. Specifically, higher-order nonlinear absorption such as five-photon absorption offers significant advantages of greater spatial confinement, increased penetration depth, reduced autofluorescence, enhanced sensitivity and improved resolution over lower orders in bioimaging. Organic chromophores and conventional semiconductor nanocrystals are leaders in two-/three-photon absorption applications, but face considerable challenges from their small five-photon action cross-sections. Herein, we reveal that the family of halide perovskite colloidal nanocrystals transcend these constraints with highly efficient five-photon-excited upconversion fluorescence-unprecedented for semiconductor nanocrystals. Amazingly, their multidimensional type I (both conduction and valence band edges of core lie within bandgap of shell) core-shell (three-dimensional methylammonium lead bromide/two-dimensional octylammonium lead bromide) perovskite nanocrystals exhibit five-photon action cross-sections that are at least 9 orders larger than state-of-the-art specially designed organic molecules. Importantly, this family of halide perovskite nanocrystals may enable fresh approaches for next-generation multiphoton imaging applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photon Reabsorption in Mixed CsPbCl3:CsPbI3 Perovskite Nanocrystal Films for Light-Emitting Diodes

Cesium lead halide nanocrystals, CsPbX3 (X = Cl, Br, I), exhibit photoluminescence quantum efficiencies approaching 100% without the core-shell structures usually used in conventional semiconductor nanocrystals. These high photoluminescence efficiencies make these crystals ideal candidates for light-emitting diodes (LEDs). However, because of the large surface area to volume ratio, halogen exch...

متن کامل

Lead Halide Perovskite Nanocrystals in the Research Spotlight: Stability and Defect Tolerance

This Perspective outlines basic structural and optical properties of lead halide perovskite colloidal nanocrystals, highlighting differences and similarities between them and conventional II-VI and III-V semiconductor quantum dots. A detailed insight into two important issues inherent to lead halide perovskite nanocrystals then follows, namely, the advantages of defect tolerance and the necessi...

متن کامل

Color-stable water-dispersed cesium lead halide perovskite nanocrystals.

Cesium lead halide perovskite nanocrystals are being lately explored for optoelectronic applications due to their emission tunability, high photoluminescence quantum yields, and narrow emission bands. Nevertheless, their incompatibility with polar solvents and composition homogenization driven by a fast anion-exchange are still important drawbacks to overcome. Herein we report on a successful e...

متن کامل

Colloidal Organometal Halide Perovskite (MAPbBrxI3−x, 0≤x≤3) Quantum Dots: Controllable Synthesis and Tunable Photoluminescence

Organic-inorganic perovskite materials, typically methylammonium lead trihalide (MAPbX3: MA = methylammonium; X = Br, I), are recently attract enormous attention for their distinguished photo-electronic properties. The control of morphology, composition and dispersability of MAPbX3 perovskite nanocrystals is crucial for the property tailoring and still a major challenge. Here we report the synt...

متن کامل

X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water

Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C═C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017